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Abstract 

Vacuum metrics admitting null, geodetic, expanding, shear-free congruences are investi- 
gated. A new solution is derived which contains three holomorphic functions of a complex 
variable. It includes, as special cases, a number of well-known solutions such as those of 
Kerr and Taub-NUT. In general, however, it admits no Killing vectors. 

1. Introduction 

W i t h  respect  to a vector  field k" which is null,  geodesic and  expanding,~ 

krk" = O, kr;~k ~ = 0, k~;~ r 0 (1.1) 

the field equat ions  for empty  space, 

R~ = 0 (1.2) 

divide na tura l ly  into three g roups :  the main equations 

klaRbltcka I = 0 (1.3) 

the  trivial equation 

R = 0 (1.4) 

and  the remain ing  subsidiary conditions. I f  the ma in  equat ions  are  satisfied 
then,  as Sachs (1962, 1963) has shown, the tr ivial  equat ion  reduces to an 
ident i ty ,  and  the coord ina tes  can be specialized in such a way tha t  only 
three o f  them enter  into the subs id iary  condit ions.w 

In  the case where the bas ic  vector  field is shear-free, 

k(~;b) k a;~ = • ;a,~2 (1.5) 

) This work was supported in part by Air Force Office of Scientific Research, Office of 
Aerospace Research, United States Air Force, under AFOSR Grant No. 903-67 and 
National Aeronautics and Space Administration under NASA Grant No. NGL 44-004- 
001. 

Throughout the paper, the following conventions are used: indices range and sum 
over 1, 2, 3, 4; a comma followed by an index or indices denotes partial differentiation, a 
semicolon covariant differentiation; round index-brackets indicate symmetrization over 
the indices enclosed, square brackets anti-symmetrization. 

w A simple proof of Sachs' Lemma is given in Appendix A, 
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the general solution to the main equations can be written explicitly; but the 
subsidiary conditions have proved less tractable. In all solutions hitherto 
published, either the basic vector field is hypersurface-orthogonal 
(Robinson & Trautman, 1960), or the metric admits a Killing vector 
(Taub, 1951; Newman, et al., 1963; Kerr, 1963; Kerr & Schild, 1964; 
Demianski & Newman, 1966; Carter, 1967; Robinson, et al., 1969). In the 
latter event one is able to reduce the number of independent variables in the 
subsidiary equations. Here we achieve the same effect by imposing covariant 
conditions on the metric which do not imply any symmetry. For a certain 
class, also defined covariantly, we obtain the general solution. This metric, 
which contains three pairs of arbitrary functions, does not in general admit 
any Killing vector. By appropriate choice of the disposable functions, 
however, one can obtain metrics with Killing fields (including all those 
cited above, with the possible exception of Carter's). As a by-product of 
the investigation, we solve what might be described as a modified Kerr- 
Schild problem: given a vacuum metric g,~ and a null, geodesic, shear-free, 
expanding vector field k", in what circumstances does there exist an H 
such that 

g'ab := g,o + 2Hk, kb (1.6) 

is also a solution of the empty space equations ? 

2. Solution of the Main Equations 

Assuming that there exists a congruence of curves P which is null, 
geodesic and shear-free, with an affinely normalized tangent vector k r, we 
can find coordinatest 

x ~ = (~, ~, o , p )  (2.1)  

for which 

dsZ = 2PZ d~ d~ + 2dZ(dp + Z dg + 2 d~ + S d2) (2.2) 

dX := a(b d~ + b d~ + de) = krdx r (2.3) 

with a ( r  0), b, b independent ofp. Assuming also that kr diverges, specializ- 
ing the coordinates further, and using the notation 

df=f l  d~ + fz d~ +f3 dZ (2.4) 

for any function f o r  ~, ~, a, we can write the integral &the  main equations as 

p2 = exp (2u)(p 2 + s (2.5) 

Z=pA-i (X21 +Af2), 2 = pZ~ q- i(~c22 q- Z~A"2) (2.6) 

S = pu3 - �88 + K) + (pm + s 2 + g2 2) (2.7) 

t The tilde may be read as complex conjugation; but none of our analysis depends on 
this interpretation; only its application to the real world. 
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s := �89 exp (-2u)(bl - bz), (2.8) 

A := a -I al - ab3, ~ := a -l a2 - ab3 (2.9) 

K: = 2 exp (-2u) L2, /7 := 2 exp (-2u)Ll  (2.10) 

L : = A - U l ,  . L : = A - u z  (2.11) 

M := �89163 + �89 (-2u)[(s + As + ~(s + As 

+ (s + _/is + A(s + ,/is (2.12) 

where u and m, like a, b, b, are disposable functions of ~, ~, a. 

3. Coordinate Transformations and Invariants 

The coordinates have been constructed out of the metric and the 
congruence/I  by a procedure which determines them up to the product of a 
trivial transformation 

x" -+ [~, ~, a,p] (3.1) 

with 

and 
xa"-~[f(C),Y(~),~,p] (3.2) 

x a -+ [~, ~, h(~, ~, a), pg(~, ~, c01 (3.3) 

f ' , f ' ,  g and h,3 being non-zero. Among the invariants of (3.2) and (3.3), we 
find the scalars 

p-I s p-2K, p-z~, p-3m, p-3M, (p eU)-4/, (peU)-4[ (3.4) 

and the 1-forms 

pdN, dW, p-'L3d~, p-'L3d~, (pe")-2Jzd~, (peU)-zYl d~ (3.5) 

where 

and 

I := Jz2 + 2/,J2, [ := Yll + 2LY, (3,6) 

J := Ll + L 2, Y :=  ~-~2 -t- j~2 (3.7) 

dW := W, dx" :=Ld~ + Ld~ + d(u + lnp) (3.8) 

The directions of d~ and d~ are also invariant under (3.2) and (3.3). Conse- 
quently, using the notation 

df =f/~ at + flz d~ + f/3 p d2, +fig dW (3.9) 

for anyf(~, ~, (r, p), we see that i f f is  invariant, so are 

fll at, flzd~, ft3,fl4 (3.10) 
15 
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Thus, for example, we construct the invariant form 

C~ dx r := - i (p  -3 M)/1 d~ + i(p -3 M)/a d~ + �89 eU)-4(I + l )  p d2J 

+ 3p -3 m dW + d(p -3 m) 

(3.11) 

4. Subsidiary Conditions 

The remaining field equations can be written as 

C, = 0 (4.1) 

To exhibit their independence of p, we remark that 

p3 Crdx r = A d~ + Ad~ + Bd~  (4.2) 

where 

A := (m - iM), + 3A(m - iM), .4 := (m + iM)2 + 3./I(m + iM) (4.3) 

and 

B := exp (-3u)[exp (3u)(m + iM)]3 + exp (-4u) I 

= exp (-3u) [exp (3u)(m - iM)]3 + exp (-4u) I (4.4) 

We may express some of these results more conveniently by means of a 
function U(~, ~, or) such that 

U3 = exp (-u)  (4.5) 

The definitions (2.12), (3.6), (3.7) and (4.4) can now be replaced by 

M = �89 exp ( - - 3 u ) ( U  1122 - -  U2211), (4.6) 

J =  e" Ul13, J =  e" U223 (4.7) 

B exp (3u) = [m exp (3u) + �89 + U2211)]3 - exp (-u)J] (4.8) 

In a given coordinate system, the metric determines the potential U up to 
the gauge transformation 

U -+ U - ~(~, ~) (4.9) 

It follows directly from the definition (3.11) that 

Ct,, sj + 3Ct, Ws] = 3p -3 mW[,, ~ + terms independent o fm  (4.10) 

Three components of this bivector are identically zero. Evaluating the 
others,t  and using the subsidiary conditions, we obtain 

3L3(m + iM) = exp (-4u)(I2 + 4/A) 
(4.11) 

3L3(m - iM) = exp (-4u)(/,  + 4L[) 

"~ By means of the commutation relations given in Appendix  B. 
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and 

{ i ( K -  K ~) m = exp (-4u)(I + i )  ~ - exp (-2u){(Ml + 3AM)z 

+ 3~(M, + S A M )  + (M2 + 3~M),  

+ 3A(M2 + 3/iM)} (4.12) 

5. Further Reduction of  the Metric 

From now onwards, we shall consider the special case 

L = L(~, ~), L = L(~, ~) (5.1) 

This is an invariant restriction, since it is equivalent to the vanishing of two 
of the forms listed in (3.5). 

Under the transformations (3.2) and (3.3), 

a ~ a/gh,3, u -+ u - �89 in ( f ' f '  g2) (5.2) 

We may therefore specialize the coordinates p and a so that 

a = 1, u3 = 0 (5.3) 

We now obtain 

b = - ( L  + u,1)cr + eUfl(~,~) 

= - ( L  + u,2) ~r + e"/3(~, ~) (5.4) 

from the definitions (2.9) and (2.11), and 

m + i m  = -exp (-4u) Icr + exp (-3u) o~(~, ~) 
(5.5) 

m - iM = -exp (-4u)/ra + exp (-3u) ~(~, ~) 

from the subsidiary condition B = 0 together with (4.4). 
The metric is thus determined by seven functions of ~ and ~: its depen- 

dence on r has been made explicit. 
The integrability conditions (4.11), together with the definitions (3.6) 

and (3.7), now form a system which involves only the background variables 
L and L: 

When the 
A = ~ = 0 reduce to 

J = L a  +L2, J = L , 2  q -L2 

I=J,2z  + 2LJ,2, i = a r , ,  + 2LY,1 (5.6) 

/,z + 4 L I =  0, ~ + 4L~ r=  0 (5.7) 

background equations (5.7) hold, the subsidiary conditions 

~,2 + 3 ~ ,  + 18 = o, a ,  + 3La + i/~ = 0 (5.8) 
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From (5.1), (5.3) and (5.4) we can compute M, most conveniently by using 
(4.5) and (4.6). On substituting into (5.5), we obtain the compatibi l i ty  
condition 

(3,2 + L3),, -J@,2 + L3) -  2J,~3 + 

=(f l . l  § L f i ) , z z - -  ff(fi.l § L f l ) -  Z Z l f l  + a (5.9) 

This completes our system of field equations. We shall solve the mass- 
aspect  equations (5.8) explicitly and reduce the compatibility condition to 
an equation in one dependent variable. The procedure depends on the 
background; but the reduced compatibility equation is the same throughout. 

If  we are dealing with a background for which 

I # 0 • i  (5.10) 

then we introduce variables ~ and ~b in place of a and a: 

c~ = -1(~ + i~b), ~ = - i ( ~  - i~b) (5.11) 

Using the background equations, we get 

3 = (~ + i~),~ - L(r  + i~) 
(5.12) 

t; = ( r  - i ~ ) , ,  - L ( ~  - i ~ )  

for the mass-aspect equations, and 

~b, Hzz -- (J~),,, -- (Y~b),zz +Jj~b = 0 (5.13) 

for the compatibility condition. 
In the limiting case, 

I = 0 = ~  r (5.14) 

the mass-aspect equations decouple. Assuming that 

./,2 ~ O ~ J ,  (5.15) 
we may write their general solution as 

= 2(J,2)3/Zv(D, a = 2 ( j , ) 3 / z v ( r  (5.16) 

We find it convenient to replace the variables/3 and fl by ~ and ~b, writing 

/3 = ( L ~ )  '/2 v + ( r  + i~ ) ,~  - L ( r  + i ~ )  

= ( j , ) I / z  ~ + (~ _ i~b)., -- L ( ~  - i40 (5.17) 

Once more, the compatibility condition reduces to (5.13). A simple example 
of a solution of this kind is: 

L = L = ~ ( [  + ~)-~ 

~b= (~ + ~)[p(~ + ~)Wi5 +q(~ + ~) -�89162 (5.18) 

where p and q are constants. 
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6. Solutions with a Flat Background 

We shall obtain an explicit solution for the case 

s,2 = 0 = L ,  (6.1) 

We begin by specializing the coordinates ~ and ~. Under the transformation 
(3.2), 

Jd~ 2 -+(J  + F)d~ 2, Jd~ 1 -->(] + ff)d~ z (6.2) 

where 

F := �89  - �88 

ff := � 8 9  �88 (6.3) 

In appropriate coordinates, therefore, 

J = 0 = Y (6.4) 

We are still free to make transformations for which F =  i f =  0. This 
restriction is equivalent to 

f (~)  = (p~ + q)l(r~ + s), f(~) = (/~ + q) / (~  + q) (6.5) 

with constant coefficients such that p s - q r ~ O  r  Under the 
bilinear transformation, 

L d~ -+ [L - rl(r~ + s)] d~, L d~ ~ [L - ?t(F~ + g)] d~ (6.6) 

Thus, without loss of generality, we require that 

L # 0 r L (6.7) 

We may now write the general solution of the background condition 
(6.1) and the mass-aspect equations as: 

L = [~ + ,~(~)1-1, L = [~ + 2t(~)]-' 

= 2 /z (~ )L  3, ~ = 2 /2(~)L 3 (6.8) 

At this point we could reduce the compatibility condition to the standard 
form (5.13) by a change of variables. It is preferable, however, to make use of 
the potential U. From (5.5) and (6.8), 

M = -�89 exp (-3u)[(/~/.),22 - (/2L), i 1 ] (6.9) 

Hence, using (4.6), (4.7) and (6.4), we obtain 

(Ull +/zL),3 =0 ,  (U22 +/2L),3 = 0  
(6.10) 

(ul~ + t,L),22 = (u22 + #L),I~ 

which are the conditions for there to exist a function ~,(~, ~) such that 

U l l  ~-/-~L = ~/,11, U22 ~- ~ L  = ~,22 (6.11) 
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After a gauge transformation (4.9), therefore, 

UI~ + / z L = O =  U22 +/2L (6.12) 

Integrating (4.5), we have 

U =  exp (-u)  a + q~(~, ~) (6.13) 

We now replace t3 and fl by new variables, X and X, writing 

/3 = L(X - ~) + ~.z, /~ = L(2 - ~) + ~., (6.14) 

Evaluating UI~ and U22, we find from (6.12) that 

X.2 = ~L/[,, ~2,~ = I~L/L (6.15) 

Thus our general solution contains three disposable functions of 
(h, ~ and a function of integration contained in X) and three of ~. Like the 
solutions discussed in the previous section, it also involves two disposable 
functions of ~ and ~, namely u and q~. These will require further considera- 
tion. 

7. Coordinate Conditions 

The background variables are invariant under the general transformation 
(3.3). Because of the co-ordinate conditions (5.3), this transformation is now 
restricted to the product of a change of  scale, 

x ~ -~" [C, C, ~/g(C, C), pg(C, C)] (7.1) 

and change in the origin of or, 

x ~ -+ [C, ~, ~ + e" h(C, ~),p] (7.2) 

Under the scale change, c,, 6, fi, fi are invariant; only u changes. Under the 
change of origin, 

~ - + o ~ - I h ,  ~ - - - ~ - i h  

/3 -+ ~ + h z - Lh fl -+ fl + h,l - Lh  (7.3) 

which corresponds to a change in the variable ,~ alone. 
We can give u a certain intrinsic significance by requiring that the Gaussian 

curvature of a 2-space with the metric 

2 exp ( Zu) dC d~ (7.4) 

should be �89 + g ) :  this is equivalent to 

(L + ua)2 + (L + Uz)t = 0 (7.5) 

We thereby subject changes of scale to the restriction 

( l n g ) , l Z  = 0 (7.6) 
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The restricted t ransformat ion of  p may  also be written as 

p -+ exp q~(~, ~, a ,p)  (7.7) 

with 

c]~ 2 -~ c~121 = c~[3 = 0 ,  c~/4 = 1 (7.8) 

The integrability condit ion for these equations, 

[p-2(K-k K)]/3 = 0 (7.9) 

is satisfied because of  (5.1). 
In some cases we can specify ~? more completely. Suppose, for example, 

that  

K = K  (7.10) 

This, together with (5.1), is necessary and sufficient for  dW, as defined in 
(3.8), to be integrable. We then have a scalar W such that  

WI1 = WI2 = Wt3 = O, WI4 = 1 (7.11) 

and, by taking 

qo = W (7.12) 

we determine p up to a multiplication by a constant.  In this scale, a dis- 
appears f rom all the basic functions except rn: 

a = 1, b3 = /~3 = //3 = 0 ,  (7.13) 

m 3 = - I e x p  ( -4u)  = - / rexp  (-4//) = constant 

For  a general background subject to (5,10), we can fix p by taking 

~V = u - } ln  (Ii)  + lnp, (7.14) 

which is equivalent to 

exp (Su) = I i  (7.15) 

Similarly, for  a background subject to (5.14) and (5.15), we write 

exp (4u) = J2 J1 (7.16) 

and in the special case (6.1), 

except, of  course, when 

KK. = 1 (7.17) 

K/~ = 0 (7.18) 

Our earlier normalizat ion (7.12) is consistent with (7.15) and (7.17) but  not  
necessarily (7.16). 

Considering that  

(p- '  O)i3 = �88 K) (7.19) 
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we can fix the origin of a, except where the background satisfies (7.10), by 
writing 

per = -4 ip - '  / 2 /p -2 (X-  g )  (7.20) 

Alternatively, for backgrounds subject to (5.10), we may write 

pa = �89 exp (4u)[I-l(m + iM) + 7-1(m - iM)] (7.21) 

If  neither of these procedures is available, then we can find coordinates in 
which all the components of the metric are independent of ~r; and there is 
in principle no way of fixing its origin. We may still be able to impose some 
restrictions on changes of origin: in the case, 

/2 = 0 (7.22) 

for example, we put 

do, = d2J (7.23) 

thereby requiring that h(~,~) should be constant. 

8. Remarks 

We can now reformulate the question posed in the Introduction, as 
follows: what are the conditions on a, b, ~, u for the vector Cr definedin 
(3.11) to be invariant under the substitution 

m -+ m + H(p 2 -}-/22)/0 (8.1) 

:for some H not identically zero ? Writing 

h := (1 - p-Z/22)p-2H (8.2) 

we have 

Qd:d  -+ Qdx"  + dh + 3 h d W  (8.3) 

and sufficient condition, therefore, is that d W  should be A necessary 
integrable; and this is equivalent to requiring that the metric should 
satisfy (7.13) in some coordinate system. There are thus two possibilities: 
if (5.10) holds, the transformation (8.1) is equivalent to changing the origin 
ofcr by a constant; if not, both metrics of(1.6) have 0/0~r as a Killing vector. 

An example of the second kind is given in (5.18). We get another class of 
examples by imposing the restriction (7.10) on the solutions found in Section 
6: these are metrics characterized, in appropriate coordinates, by (7.13) and 

5~ = �89 -i , ~=�89 -1, ~:= 1, 0 o r -1  (8.4) 

which have been given elsewhere (Robinson, et al., 1969). A number of 
metrics mentioned in the Introduction belong to this class. 

Unless )t and ~ satisfy these conditions or 

~' ~' = o ( 8 . 5 )  
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the coordinates p and a are determined by the metric and the congruence F. 
The functions 

N ( 0  := tzz(A') -3, _N(~) :=/22(~,') -3 (8.6) 

are similarly determined, since 

N = -2(m + iM)  z ~-3,  N = -2(m - iM)  z K -3 (8.7) 

Having tL and 12 at our disposal, we can always arrange that Nand  Nshould 
be solvable for ~ and ~ respectively. Unless 

~ = o (8.8) 
however, _P is fixed by its relation to the Weyl tensor: it is tangential to a 
coincident pair of principal null directions (Goldberg & Sachs, 1962). in 
general, therefore, the coordinates are determined by the metric alone. 
There are then no Killing vectors. 

Appendix A 

The main equations are necessary and 
existence of a vector A" such that 

Rab = 2A(.kb) 

From this equation and (1.1), we obtain 

~ _ 1Rka k G a ;b - -  ~ ;a 

and 

where 

sufficient conditions for the 

kt, R~lS;s kc = S,  bc;~ k" + S,,~c kr;,. -2S"ct,,kbl;~ 

(A.1) 

(A.2) 

(A.3) 

S, bc := k[.Rblc (A.4) 

We now use the Bianchi identities 

Gab;~ = 0 (A.5) 

Since k a has non-vanishing divergence, the trivial equation follows directly 
from (A.2). Because of (A.3), if 

k[~Rb]c = 0 (A.6) 

at any point, then it holds on the geodesic tangential to k, through this 
point. 

The last equation is equivalent to 

G,b = 2tk~ kb (A.7) 

for some scalar A: hence, if it holds in a four-dimensional region, we derive 

Gab;b = (A,, k' + Akr;,)k. (A.8) 
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f rom which it follows that  if  the last component  of  the field equation is 
satisfied at any point,  it is also satisfied along the appropriate  geodesic. 

Appendix B 

The invariant  derivatives defined in Section 3 satisfy the following 
commuta t ion  relations: 

f/12 -f /21 = - exp (2u)[2ip[2f/3 + � 8 9  /~)f/4] (B.I) 

f l,3 - f /3, = - P - '  r3f/4 (B.2) 

f /2, - f , 2  = _ p - l  ,,, 

fl~, - j )41  = 0 (B.3) 

ff24 - J %  = 0 

f134 --f/43 = --f/3 (B.4) 

We remark,  incidentally, that  (7.19) follows f rom the Jacobi identity 

])[[I213] q-J~)[[3t]2] +f/[[23]11 = 0 (B.5) 
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